Ihr kennt das Problem sicherlich auch, der Kunde will „mal eben“ einen Last und Performance Test durchführen, um an Ergebnisse zu kommen. Meistens wird dazu immer noch Jmeter genutzt, aber ich zeige euch wie man mit diesem Python Skript viel umfassender und flexibler arbeiten kann. Die Anpassungen sind für jedes mögliches Szenario auslegbar, selbst ich habe noch nicht alle Möglichkeiten dieses Skriptes hier entsprechend angepasst.
Einige Ziele, die ich noch nicht umgesetzt habe:
- Grafisches Reporting ähnlich Jmeter
- Besseres Reporting in HTML oder PDF
import requests import threading import time import csv from tqdm import tqdm import statistics import logging # Todo: ## 1. Logging ## 2. CSV-Datei ## 3. Statistiken ## 4. Auswertung ## 5. Ausgabe ## 6. Dokumentation ## 7. Testen #Author: Frank Rentmeister 2023 #URL: https://example.com #Date: 2021-09-30 #Version: 1.0 #Description: Load and Performance Tooling # Set the log level to DEBUG to log all messages LOG_FORMAT = '%(asctime)s - %(name)s - %(levelname)s - %(message)s - %(threadName)s - %(thread)d - %(lineno)d - %(funcName)s - %(process)d - %(processName)s - %(levelname)s - %(message)s - %(pathname)s - %(filename)s - %(module)s - %(exc_info)s - %(exc_text)s - %(created)f - %(relativeCreated)d - %(msecs)d - %(thread)d - %(threadName)s - %(process)d - %(processName)s - %(levelname)s - %(message)s - %(pathname)s - %(filename)s - %(module)s - %(exc_info)s - %(exc_text)s - %(created)f - %(relativeCreated)d - %(msecs)d - %(thread)d - %(threadName)s - %(process)d - %(processName)s - %(levelname)s - %(message)s - %(pathname)s - %(filename)s - %(module)s - %(exc_info)s - %(exc_text)s - %(created)f - %(relativeCreated)d - %(msecs)d - %(thread)d - %(threadName)s - %(process)d - %(processName)s - %(levelname)s - %(message)s - %(pathname)s - %(filename)s - %(module)s - %(exc_info)s - %(exc_text)s - %(created)f - %(relativeCreated)d - %(msecs)d' logging.basicConfig(level=logging.DEBUG, format=LOG_FORMAT, filename='Load_and_Performance_Tooling/Logging/logfile.log', filemode='w') logger = logging.getLogger() # Example usage of logging logging.debug('This is a debug message') logging.info('This is an info message') logging.warning('This is a warning message') logging.error('This is an error message') logging.critical('This is a critical message') logging.info('This is an info message with %s', 'some parameters') logging.info('This is an info message with %s and %s', 'two', 'parameters') logging.info('This is an info message with %s and %s and %s', 'three', 'parameters', 'here') logging.info('This is an info message with %s and %s and %s and %s', 'four', 'parameters', 'here', 'now') logging.info('This is an info message with %s and %s and %s and %s and %s', 'five', 'parameters', 'here', 'now', 'again') logging.info('This is an info message with %s and %s and %s and %s and %s and %s', 'six', 'parameters', 'here', 'now', 'again', 'and again') logging.info('This is an info message with %s and %s and %s and %s and %s and %s and %s', 'seven', 'parameters', 'here', 'now', 'again', 'and again', 'and again') logging.info('This is an info message with %s and %s and %s and %s and %s and %s and %s and %s', 'eight', 'parameters', 'here', 'now', 'again', 'and again', 'and again', 'and again') logging.info('This is an info message with %s and %s and %s and %s and %s and %s and %s and %s and %s', 'nine', 'parameters', 'here', 'now', 'again', 'and again', 'and again', 'and again', 'and again') # URL to test url = "https://example.com" assert url.startswith("http"), "URL must start with http:// or https://" # Make sure the URL starts with http:// or https:// #assert url.count(".") >= 2, "URL must contain at least two periods" # Make sure the URL contains at least two periods assert url.count(" ") == 0, "URL must not contain spaces" # Make sure the URL does not contain spaces # Number of users to simulate num_users = 2000 # Number of threads to use for testing num_threads = 10 # NEW- Create a list to hold the response times def simulate_user_request(url): try: response = requests.get(url) response.raise_for_status() # Raise an exception for HTTP errors return response.text except requests.exceptions.RequestException as e: print("An error occurred:", e) # Define a function to simulate a user making a request def simulate_user_request(thread_id, progress, response_times): for i in tqdm(range(num_users//num_threads), desc=f"Thread {thread_id}", position=thread_id, bar_format="{l_bar}{bar:20}{r_bar}{bar:-10b}", colour="green"): try: # Make a GET request to the URL start_time = time.time() response = requests.get(url) response_time = time.time() - start_time response.raise_for_status() # Raise exception if response code is not 2xx response.close() # Close the connection # Append the response time to the response_times list response_times.append(response_time) # Increment the progress counter for the corresponding thread progress[thread_id] += 1 except: pass # Define a function to split the load among multiple threads def run_threads(progress, response_times): # Create a list to hold the threads threads = [] # Start the threads for i in range(num_threads): thread = threading.Thread(target=simulate_user_request, args=(i, progress, response_times)) thread.start() threads.append(thread) # Wait for the threads to finish for thread in threads: thread.join() # Define a function to run the load test def run_load_test(): # Start the load test start_time = time.time() response_times = [] progress = [0] * num_threads # Define the progress list here with tqdm(total=num_users, desc=f"Overall Progress ({url})", bar_format="{l_bar}{bar:20}{r_bar}{bar:-10b}", colour="green") as pbar: while True: run_threads(progress, response_times) # Pass progress list to run_threads total_progress = sum(progress) pbar.update(total_progress - pbar.n) if total_progress == num_users: # Stop when all users have been simulated break time.sleep(0.1) # Wait for threads to catch up pbar.refresh() # Refresh the progress bar display # NEW - Calculate the access time statistics mean_access_time = statistics.mean(response_times) median_access_time = statistics.median(response_times) max_access_time = max(response_times) min_access_time = min(response_times) # NEW -Print the access time statistics print(f"Mean access time: {mean_access_time:.3f} seconds") print(f"Median access time: {median_access_time:.3f} seconds") print(f"Maximum access time: {max_access_time:.3f} seconds") print(f"Minimum access time: {min_access_time:.3f} seconds") #todo: Save the load test results to a CSV file (think about this one) # hier werden die Zugriffszeiten gesammelt #access_times = { # 'https://example.com': [124, 238, 456, 345], # 'https://example.org': [167, 389, 567, 289], # 'https://example.net': [200, 300, 450, 600] #} # Calculate the duration of the load test duration = time.time() - start_time # Calculate access times and performance metrics access_times = [sum(response_times[i*num_threads:(i+1)*num_threads])/num_threads for i in range(num_users//num_threads)] mean_access_time = sum(access_times)/len(access_times) median_access_time = sorted(access_times)[len(access_times)//2] max_access_time = max(access_times) min_access_time = min(access_times) throughput = num_users/duration requests_per_second = throughput/num_threads # Print the load test results print(f"Mean access time: {mean_access_time*1000:.2f} milliseconds") print(f"Load test duration: {duration:.2f} seconds") print(f"Mean access time: {mean_access_time:.3f} seconds") print(f"Median access time: {median_access_time:.3f} seconds") print(f"Maximum access time: {max_access_time:.3f} seconds") print(f"Minimum access time: {min_access_time:.3f} seconds") print(f"Throughput: {throughput:.2f} requests/second") print(f"Requests per second: {requests_per_second:.2f} requests/second") print(f"Number of users: {num_users}") print(f"Number of threads: {num_threads}") print(f"Number of requests per user: {num_users/num_threads}") print(f"Number of requests per thread: {num_users/num_threads/num_threads}") print(f"Number of requests per second: {num_users/duration}") print(f"Number of requests per second per thread: {num_users/duration/num_threads}") print(f"Number of requests per second per user: {num_users/duration/num_users}") print(f"Total duration: {duration:.2f} seconds") print(f"Total progress: {sum(progress)}") print(f"Total progress per second: {sum(progress)/duration:.2f}") print(f"Total progress per second per thread: {sum(progress)/duration/num_threads:.2f}") print(f"Total progress per second per user: {sum(progress)/duration/num_users:.2f}") print(f"Total progress per thread: {sum(progress)/num_threads:.2f}") print(f"Total progress per user: {sum(progress)/num_users:.2f}") print(f"Total progress per request: {sum(progress)/num_users/num_threads:.2f}") print(f"Total progress per request per second: {sum(progress)/num_users/num_threads/duration:.2f}") print(f"Total progress per request per second per thread: {sum(progress)/num_users/num_threads/duration/num_threads:.2f}") print(f"Total progress per request per second per user: {sum(progress)/num_users/num_threads/duration/num_users:.2f}") print(f"Total progress per request per thread: {sum(progress)/num_users/num_threads:.2f}") print(f"Total progress per request per user: {sum(progress)/num_users/num_threads:.2f}") print(f"Total progress per second per request: {sum(progress)/duration/num_users/num_threads:.2f}") print(f"Total progress per second per request per thread: {sum(progress)/duration/num_users/num_threads/num_threads:.2f}") print(f"Total progress per second per request per user: {sum(progress)/duration/num_users/num_threads/num_users:.2f}") # Save the load test results to a CSV file with open("load_test_results.csv", "w", newline='') as csv_file: fieldnames = [ "Metric", "Value", "Short Value", ] # Create a CSV writer csv_writer = csv.DictWriter(csv_file, fieldnames=fieldnames, delimiter=",", quotechar='"', quoting=csv.QUOTE_MINIMAL) csv_writer.writeheader() # Write the load test results to the CSV file csv_writer.writerow({"Metric": "Average Response Time (seconds)", "Value": mean_access_time, "Short Value": round(mean_access_time, 3)}) csv_writer.writerow({"Metric": "Load Test Duration (seconds)", "Value": duration, "Short Value": round(duration, 2)}) csv_writer.writerow({"Metric": "Mean Access Time (milliseconds)", "Value": mean_access_time * 1000, "Short Value": round(mean_access_time * 1000, 2)}) csv_writer.writerow({"Metric": "Median Access Time (seconds)", "Value": median_access_time, "Short Value": round(median_access_time, 3)}) csv_writer.writerow({"Metric": "Maximum Access Time (seconds)", "Value": max_access_time, "Short Value": round(max_access_time, 3)}) csv_writer.writerow({"Metric": "Minimum Access Time (seconds)", "Value": min_access_time, "Short Value": round(min_access_time, 3)}) csv_writer.writerow({"Metric": "Throughput (requests/second)", "Value": throughput, "Short Value": round(throughput, 2)}) csv_writer.writerow({"Metric": "Requests per Second (requests/second)", "Value": requests_per_second, "Short Value": round(requests_per_second, 2)}) csv_writer.writerow({"Metric": "Number of Users", "Value": num_users, "Short Value": num_users}) csv_writer.writerow({"Metric": "Number of Threads", "Value": num_threads, "Short Value": num_threads}) csv_writer.writerow({"Metric": "Number of Requests per User", "Value": num_users / num_threads, "Short Value": round(num_users / num_threads)}) csv_writer.writerow({"Metric": "Number of Requests per Thread", "Value": num_users / (num_threads * num_threads), "Short Value": round(num_users / (num_threads * num_threads))}) csv_writer.writerow({"Metric": "Number of Requests per Second", "Value": num_users / duration, "Short Value": round(num_users / duration)}) csv_writer.writerow({"Metric": "Number of Requests per Second per Thread", "Value": num_users / (duration * num_threads), "Short Value": round(num_users / (duration * num_threads))}) csv_writer.writerow({"Metric": "Number of Requests per Second per User", "Value": num_users / (duration * num_users), "Short Value": round(num_users / (duration * num_users))}) csv_writer.writerow({"Metric": "Number of Requests per Minute", "Value": num_users / duration * 60, "Short Value": round(num_users / duration * 60)}) csv_writer.writerow({"Metric": "Number of Requests per Minute per Thread", "Value": num_users / (duration * num_threads) * 60, "Short Value": round(num_users / (duration * num_threads) * 60)}) csv_writer.writerow({"Metric": "Number of Requests per Minute per User", "Value": num_users / (duration * num_users) * 60, "Short Value": round(num_users / (duration * num_users) * 60)}) csv_writer.writerow({"Metric": "Number of Requests per Hour", "Value": num_users / duration * 60 * 60, "Short Value": round(num_users / duration * 60 * 60)}) csv_writer.writerow({"Metric": "Number of Requests per Hour per Thread", "Value": num_users / (duration * num_threads) * 60 * 60, "Short Value": round(num_users / (duration * num_threads) * 60 * 60)}) csv_writer.writerow({"Metric": "Number of Requests per Hour per User", "Value": num_users / (duration * num_users) * 60 * 60, "Short Value": round(num_users / (duration * num_users) * 60 * 60)}) csv_writer.writerow({"Metric": "Number of Requests per Day", "Value": num_users / duration * 60 * 60 * 24, "Short Value": round(num_users / duration * 60 * 60 * 24)}) csv_writer.writerow({"Metric": "Number of Requests per Day per Thread", "Value": num_users / (duration * num_threads) * 60 * 60 * 24, "Short Value": round(num_users / (duration * num_threads) * 60 * 60 * 24)}) csv_writer.writerow({"Metric": "Number of Requests per Day per User", "Value": num_users / (duration * num_users) * 60 * 60 * 24, "Short Value": round(num_users / (duration * num_users) * 60 * 60 * 24)}) csv_writer.writerow({"Metric": "Number of Requests per Month", "Value": num_users / duration * 60 * 60 * 24 * 30, "Short Value": round(num_users / duration * 60 * 60 * 24 * 30)}) csv_writer.writerow({"Metric": "Number of Requests per Month per Thread", "Value": num_users / (duration * num_threads) * 60 * 60 * 24 * 30, "Short Value": round(num_users / (duration * num_threads) * 60 * 60 * 24 * 30)}) csv_writer.writerow({"Metric": "Number of Requests per Month per User", "Value": num_users / (duration * num_users) * 60 * 60 * 24 * 30, "Short Value": round(num_users / (duration * num_users) * 60 * 60 * 24 * 30)}) csv_writer.writerow({"Metric": "Number of Requests per Year", "Value": num_users / duration * 60 * 60 * 24 * 365, "Short Value": round(num_users / duration * 60 * 60 * 24 * 365)}) csv_writer.writerow({"Metric": "Number of Requests per Year per Thread", "Value": num_users / (duration * num_threads) * 60 * 60 * 24 * 365, "Short Value": round(num_users / (duration * num_threads) * 60 * 60 * 24 * 365)}) csv_writer.writerow({"Metric": "Number of Requests per Year per User", "Value": num_users / (duration * num_users) * 60 * 60 * 24 * 365, "Short Value": round(num_users / (duration * num_users) * 60 * 60 * 24 * 365)}) #csv_writer.writeheader() # Add an empty row to separate the access times from the metrics #csv_writer.writerow({"Metric": "Access Time (seconds)", "Value": None}) # Write the access times to the CSV file csv_writer.writerow({"Metric": "Access Time (seconds)", "Value": None}) for access_time in response_times: csv_writer.writerow({"Metric": None, "Value": access_time}) # Sort the response times and write them to the CSV file response_times.sort() for response_time in response_times: csv_writer.writerow({"Metric": None, "Value": response_time}) # Run the load test run_load_test() # Path: Load_and_Performance/test_100_user.py ##### Documentation ##### ''' - The script imports the necessary modules for load testing, such as requests for making HTTP requests, threading for running multiple threads simultaneously, time for measuring time, csv for reading and writing CSV files, tqdm for displaying a progress bar, statistics for calculating performance metrics, and logging for logging messages. - The script defines the URL to test and checks that it starts with "http://" or "https://", that it contains at least two periods, and that it does not contain any spaces. - The script sets the number of users to simulate and the number of threads to use for testing. - The script defines a function called simulate_user_request() that simulates a user making a request to the URL. The function makes a GET request to the URL, measures the response time, and appends the response time to a list called response_times. The function also increments the progress counter for the corresponding thread. The function takes three arguments: thread_id, progress, and response_times. - The script defines a function called run_threads() that splits the load among multiple threads. The function creates a list to hold the threads, starts each thread, and waits for all threads to finish. The function takes two arguments: progress and response_times. - The script defines a function called run_load_test() that runs the load test. The function initializes the response_times list and a progress list that will keep track of the progress for each thread. The function then starts a progress bar using the tqdm module and enters a loop that runs until all users have been simulated. In each iteration of the loop, the function calls run_threads() to split the load among multiple threads, updates the progress bar, and waits for the threads to catch up. After the loop completes, the function calculates various access times and performance metrics and prints them to the console. The function also saves the load test results to a CSV file using the csv module. - The script sets the log level to DEBUG to log all messages. - The script provides an example usage of logging by logging messages at different levels. - The script calls the run_load_test() function to run the load test. - The script defines a main function that calls the run_load_test() function. - The script calls the main() function to run the load test. - The script checks if the script is being run directly and, if so, calls the main() function. - Import the necessary modules: requests (for making HTTP requests), threading (for running multiple threads simultaneously), time (for measuring time), csv (for reading and writing CSV files), and tqdm (for displaying a progress bar). - Define the URL to test and assert that it starts with "http://" or "https://", that it contains at least two periods, and that it does not contain any spaces. - Set the number of users to simulate and the number of threads to use for testing. - Define a function called simulate_user_request() that simulates a user making a request to the URL. The function makes a GET request to the URL, measures the response time, and appends the response time to a list called response_times. The function also increments the progress counter for the corresponding thread. The function takes three arguments: thread_id, progress, and response_times. - Define a function called run_threads() that splits the load among multiple threads. The function creates a list to hold the threads, starts each thread, and waits for all threads to finish. The function takes two arguments: progress and response_times. - Define a function called run_load_test() that runs the load test. The function initializes the response_times list and a progress list that will keep track of the progress for each thread. The function then starts a progress bar using the tqdm module and enters a loop that runs until all users have been simulated. In each iteration of the loop, the function calls run_threads() to split the load among multiple threads, updates the progress bar, and waits for the threads to catch up. After the loop completes, the function calculates various access times and performance metrics and prints them to the console. The function also saves the load test results to a CSV file using the csv module. - Call the run_load_test() function to run the load test. - Define a main function that calls the run_load_test() function. - Call the main() function to run the load test. - Check if the script is being run directly and, if so, call the main() function. - Import the necessary modules: requests (for making HTTP requests), threading (for running multiple threads simultaneously), time (for measuring time), csv (for reading and writing CSV files), and tqdm (for displaying a progress bar). - Define the URL to test and assert that it starts with "http://" or "https://", that it contains at least two periods, and that it does not contain any spaces. - Set the number of users to simulate and the number of threads to use for testing. - Define a function called simulate_user_request() that simulates a user making a request to the URL. The function makes a GET request to the URL, measures the response time, and appends the response time to a list called response_times. The function also increments the progress counter for the corresponding thread. The function takes three arguments: thread_id, progress, and response_times. - Define a function called run_threads() that splits the load among multiple threads. The function creates a list to hold the threads, starts each thread, and waits for all threads to finish. The function takes two arguments: progress and response_times. - Define a function called run_load_test() that runs the load test. The function initializes the response_times list and a progress list that will keep track of the progress for each thread. The function then starts a progress bar using the tqdm module and enters a loop that runs until all users have been simulated. In each iteration of the loop, the function calls run_threads() to split the load among multiple threads, updates the progress bar, and waits for the threads to catch up. After the loop completes, the function calculates various access times and performance metrics and prints them to the console. The function also saves the load test results to a CSV file using the csv module. - Call the run_load_test() function to run the load test. '''
Neueste Kommentare